论文标题

使用延迟链的神经形态实施ECG异常检测

Neuromorphic implementation of ECG anomaly detection using delay chains

论文作者

Gerber, Stefan, Steiner, Marc, Maryada, Indiveri, Giacomo, Donati, Elisa

论文摘要

使用可穿戴设备测量的生物信号的实时分析和分类在计算上是昂贵的,需要专用的低功率硬件。一种有希望的方法是使用使用内存计算体系结构和神经形态电子电路实现的尖峰神经网络。但是,由于这些电路以流方式处理数据而没有将其存储在外部缓冲区中的可能性,因此一个重大挑战在于处理时空信号的处理时间比网络突触和神经元中存在的时间常数持续更长。在这里,我们建议使用并行延迟链扩展尖峰神经网络的记忆能力。我们表明,可以将多秒钟的时间信号映射到分布在具有几毫秒的时间常数之间的尖峰活动。我们在ECG异常检测任务上验证了这种方法,并提出了实验结果,该结果证明了时间信息在网络活动中的正确保留。

Real-time analysis and classification of bio-signals measured using wearable devices is computationally costly and requires dedicated low-power hardware. One promising approach is to use spiking neural networks implemented using in-memory computing architectures and neuromorphic electronic circuits. However, as these circuits process data in streaming mode without the possibility of storing it in external buffers, a major challenge lies in the processing of spatio-temporal signals that last longer than the time constants present in the network synapses and neurons. Here we propose to extend the memory capacity of a spiking neural network by using parallel delay chains. We show that it is possible to map temporal signals of multiple seconds into spiking activity distributed across multiple neurons which have time constants of few milliseconds. We validate this approach on an ECG anomaly detection task and present experimental results that demonstrate how temporal information is properly preserved in the network activity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源