论文标题

克隆器:用于占用网格辅助神经表示的摄像头融合

CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural Representations

论文作者

Carlson, Alexandra, Ramanagopal, Manikandasriram Srinivasan, Tseng, Nathan, Johnson-Roberson, Matthew, Vasudevan, Ram, Skinner, Katherine A.

论文摘要

神经辐射场(NERFS)的最新进展实现了最新的新型视图综合,并促进了场景特性的密集估计。但是,NERF通常会因稀疏视图中捕获的大型无限场景而失败,场景内容集中在远离相机的情况下,这是典型的现场机器人应用程序。特别是,NERF风格的算法的性能较差:(1)当视图不足而没有姿势多样性的视图不足时,(2)当场景包含饱和度和阴影时,以及(3)当对具有精细结构的大型无界场景进行精心采样时,计算中就会大量强度。 本文提出了克隆器,它通过允许从稀疏输入传感器视图中观察到的大型户外驾驶场景来对NERF进行显着改善。这是通过将NERF框架中的占用和颜色学习分离成分别使用LIDAR和相机数据训练的单独的多层感知器(MLP)来实现的。此外,本文提出了一种新的方法,可以在NERF模型旁边构建可区分的3D占用网格图(OGM),并利用此占用网格来改进沿射线的点采样,以在度量空间中进行体积渲染。 通过在Kitti数据集的场景上进行的广泛定量和定性实验,本文表明,在新型视图合成和密集的深度预测任务上,对稀疏输入数据培训时,所提出的方法在新型视图合成和密集的深度预测任务上都优于最先进的NERF模型。

Recent advances in neural radiance fields (NeRFs) achieve state-of-the-art novel view synthesis and facilitate dense estimation of scene properties. However, NeRFs often fail for large, unbounded scenes that are captured under very sparse views with the scene content concentrated far away from the camera, as is typical for field robotics applications. In particular, NeRF-style algorithms perform poorly: (1) when there are insufficient views with little pose diversity, (2) when scenes contain saturation and shadows, and (3) when finely sampling large unbounded scenes with fine structures becomes computationally intensive. This paper proposes CLONeR, which significantly improves upon NeRF by allowing it to model large outdoor driving scenes that are observed from sparse input sensor views. This is achieved by decoupling occupancy and color learning within the NeRF framework into separate Multi-Layer Perceptrons (MLPs) trained using LiDAR and camera data, respectively. In addition, this paper proposes a novel method to build differentiable 3D Occupancy Grid Maps (OGM) alongside the NeRF model, and leverage this occupancy grid for improved sampling of points along a ray for volumetric rendering in metric space. Through extensive quantitative and qualitative experiments on scenes from the KITTI dataset, this paper demonstrates that the proposed method outperforms state-of-the-art NeRF models on both novel view synthesis and dense depth prediction tasks when trained on sparse input data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源