论文标题

深层神经网络的长期冰雹风险评估

Long-term hail risk assessment with deep neural networks

论文作者

Lukyanenko, Ivan, Mozikov, Mikhail, Maximov, Yury, Makarov, Ilya

论文摘要

冰雹风险评估对于估计和减少对农作物,果园和基础设施的破坏是必要的。此外,它有助于估计和减少企业,尤其是保险公司的损失。但是冰雹预测具有挑战性。为此目的设计模型的数据是树维的地理空间时间序列。关于可用数据集的分辨率,冰雹是一个非常本地的事件。同样,冰雹事件很少见 - 观察中只有1%的目标标记为“冰雹”。现象和短期冰雹预测的模型正在改善。将机器学习模型引入气象学领域并不是什么新鲜事。还有各种气候模型反映了未来气候变化的可能情况。但是,没有用于数据驱动的机器学习模型来预测给定区域的冰雹频率变化。 后一个任务的第一种可能方法是忽略空间和时间结构,并开发出能够将气象变量的给定垂直剖面分类为有利于冰雹形成的模型。尽管这种方法肯定会忽略重要信息,但它的加权非常轻,很容易扩展,因为它将观察值视为彼此独立的。更高级的方法是设计能够处理地理空间数据的神经网络。我们在这里的想法是将负责处理空间数据处理的卷积层与能够与时间结构一起工作的复发神经网络块相结合。 这项研究比较了两种方法,并介绍了一个适合预测冰雹频率变化的任务的模型。

Hail risk assessment is necessary to estimate and reduce damage to crops, orchards, and infrastructure. Also, it helps to estimate and reduce consequent losses for businesses and, particularly, insurance companies. But hail forecasting is challenging. Data used for designing models for this purpose are tree-dimensional geospatial time series. Hail is a very local event with respect to the resolution of available datasets. Also, hail events are rare - only 1% of targets in observations are marked as "hail". Models for nowcasting and short-term hail forecasts are improving. Introducing machine learning models to the meteorology field is not new. There are also various climate models reflecting possible scenarios of climate change in the future. But there are no machine learning models for data-driven forecasting of changes in hail frequency for a given area. The first possible approach for the latter task is to ignore spatial and temporal structure and develop a model capable of classifying a given vertical profile of meteorological variables as favorable to hail formation or not. Although such an approach certainly neglects important information, it is very light weighted and easily scalable because it treats observations as independent from each other. The more advanced approach is to design a neural network capable to process geospatial data. Our idea here is to combine convolutional layers responsible for the processing of spatial data with recurrent neural network blocks capable to work with temporal structure. This study compares two approaches and introduces a model suitable for the task of forecasting changes in hail frequency for ongoing decades.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源