论文标题
库仑分支用于Quaternionic表示
Coulomb branches for quaternionic representations
论文作者
论文摘要
I describe the \emph{Chiral rings} $R_{3,4}$ for $3$D, $N=4$ supersymmetric $G$-gauge theory and matter fields in quaternionic representations $E$: first, by a topological tweak of the construction of arxiv:1601.03586, and second, more explicitly, by Weyl group descent from the maximal torus.拓扑阻塞为$ W_4(e)$ modulo squares,以$ r_3 $;从$η\ cdot e $ $ r_4 $出现的次要障碍物可能会出现。 TODA基础上的平坦度允许将其减少到$ \ Mathrm {su} _2 $来计算。对于某些表示形式,Abelianization公式在最大圆环和Weyl组方面描述了$ r $。这提供了最近尝试ARXIV的替代方法:2201.09475。
I describe the \emph{Chiral rings} $R_{3,4}$ for $3$D, $N=4$ supersymmetric $G$-gauge theory and matter fields in quaternionic representations $E$: first, by a topological tweak of the construction of arxiv:1601.03586, and second, more explicitly, by Weyl group descent from the maximal torus. A topological obstruction is $w_4(E)$ modulo squares, for $R_3$; a secondary obstruction, from $η\cdot E$, may appear for $R_4$. Flatness over the Toda bases allows their calculation by reduction to $\mathrm{SU}_2$. For some representations, an Abelianization formula describes the $R$ in terms of the maximal torus and the Weyl group. This provides an alternative to a recent attempt arxiv:2201.09475.