论文标题
沿着dubrovin-frobenius歧管的腐蚀性的体纹状体变形
Somonodromic Deformations Along the Caustic of a Dubrovin-Frobenius Manifold
论文作者
论文摘要
我们研究了与dubrovin-frobenius歧管沿腐蚀性歧管相关的普通微分方程家族。仅在苛性遗传和非分类条件下丢失一个愿意后,我们为该家族写下正常形式,并证明相应的基本矩阵溶液是强烈的异构粒子。结果表明,形式单构型的指数与沿其腐蚀性沿杜邦 - 弗罗贝尼乌斯歧管的繁殖结构有关。
We study the family of ordinary differential equations associated to a Dubrovin-Frobenius manifold along its caustic. Upon just loosing an idempotent at the caustic and under a non-degeneracy condition, we write down a normal form for this family and prove that the corresponding fundamental matrix solutions are strongly isomonodromic. It is shown that the exponent of formal monodromy is related to the multiplication structure of the Dubrovin-Frobenius manifold along its caustic.