论文标题
青光眼和DR分类的多模式信息融合
Multimodal Information Fusion for Glaucoma and DR Classification
论文作者
论文摘要
多模式信息在医疗任务中经常可用。通过结合来自多个来源的信息,临床医生可以做出更准确的判断。近年来,在临床实践中使用了多种成像技术进行视网膜分析:2D眼底照片,3D光学相干断层扫描(OCT)和3D OCT血管造影等。我们的论文研究了基于深度学习的三种多模式信息融合策略,以溶解视网膜分析:早期融合,中间融合,中介融合和层次结构。常用的早期和中间融合很简单,但不能完全利用模式之间的互补信息。我们开发了一种分层融合方法,该方法着重于将网络多个维度的特征组合在一起,并探索模式之间的相关性。这些方法分别用于使用公共伽马数据集(Fellus Photophs和OCT)以及Plexelite 9000(Carl Zeis Meditec Inc.)的私人数据集,将这些方法应用于青光眼和糖尿病性视网膜病变分类。我们的分层融合方法在病例中表现最好,并为更好的临床诊断铺平了道路。
Multimodal information is frequently available in medical tasks. By combining information from multiple sources, clinicians are able to make more accurate judgments. In recent years, multiple imaging techniques have been used in clinical practice for retinal analysis: 2D fundus photographs, 3D optical coherence tomography (OCT) and 3D OCT angiography, etc. Our paper investigates three multimodal information fusion strategies based on deep learning to solve retinal analysis tasks: early fusion, intermediate fusion, and hierarchical fusion. The commonly used early and intermediate fusions are simple but do not fully exploit the complementary information between modalities. We developed a hierarchical fusion approach that focuses on combining features across multiple dimensions of the network, as well as exploring the correlation between modalities. These approaches were applied to glaucoma and diabetic retinopathy classification, using the public GAMMA dataset (fundus photographs and OCT) and a private dataset of PlexElite 9000 (Carl Zeis Meditec Inc.) OCT angiography acquisitions, respectively. Our hierarchical fusion method performed the best in both cases and paved the way for better clinical diagnosis.