论文标题
从潜在动态到有意义的表示
From latent dynamics to meaningful representations
论文作者
论文摘要
尽管表示学习对于机器学习和人工智能的兴起至关重要,但仍在使学习的表示有意义的关键问题。为此,典型的方法是通过先前的概率分布正规化学习的表示。但是,这样的先验通常不可用或临时。为了解决这一问题,最近的努力已转向利用从物理原则来指导学习过程的见解。本着这种精神,我们提出了一个纯粹的动态限制的表示框架。我们不依靠预定义的概率,而是限制了潜在的表示以可学习的过渡密度遵循过度阻尼的Langevin动力学,这是由统计力学驱动的。我们表明,这是对随机动力学系统中表示学习的更自然的限制,具有唯一识别地面真实表示形式的关键能力。我们验证了不同系统的框架,包括真实的荧光DNA电影数据集。我们表明,我们的算法可以唯一识别正交,等距和有意义的潜在表示。
While representation learning has been central to the rise of machine learning and artificial intelligence, a key problem remains in making the learned representations meaningful. For this, the typical approach is to regularize the learned representation through prior probability distributions. However, such priors are usually unavailable or are ad hoc. To deal with this, recent efforts have shifted towards leveraging the insights from physical principles to guide the learning process. In this spirit, we propose a purely dynamics-constrained representation learning framework. Instead of relying on predefined probabilities, we restrict the latent representation to follow overdamped Langevin dynamics with a learnable transition density - a prior driven by statistical mechanics. We show this is a more natural constraint for representation learning in stochastic dynamical systems, with the crucial ability to uniquely identify the ground truth representation. We validate our framework for different systems including a real-world fluorescent DNA movie dataset. We show that our algorithm can uniquely identify orthogonal, isometric and meaningful latent representations.