论文标题
$ e^{+} e^{ - } \ toηϕ $的研究通过Belle的初始状态辐射
Study of $e^{+}e^{-}\toηϕ$ via Initial State Radiation at Belle
论文作者
论文摘要
使用$ 980〜fb^{ - 1} $在$υ(ns)(ns)(n = 1,2,3,4,5)$周围收集的数据(n = 1,2,3,4,5)$ ressoncants $ e^{+e^{+} e^{ - } { - } \ frofthesholdto $ 3.955〜 GEV}/C^{2} $通过初始状态辐射。从多参数拟合中假设$ ϕ(2170)$在$ ηϕ $最终状态下,根据BESIII的先前测量,$ ϕ(1680)$的共鸣参数确定为$ m_ {ϕ(1680)} =(1683 \ pm 7 \ pm 9)分别错误),$γ_{ϕ(1680)} =(149 \ pm 12 \ pm 13) b} [ϕ(1680)\ toηϕ] =(122 \ pm 6 \ pm 13)〜{\ rm ev} $,$(219 \ pm 15 \ pm 18) $ ϕ(1680)\ toηϕ $衰减的分支分数确定为约20%。此外,$ j/ψ\ toηϕ $的分支分数为$(7.1 \ pm 1.0 \ pm 0.5)\ times 10^{ - 4} $。但是,在此分析中,在$ ηϕ $最终状态中没有明显观察到$ ϕ(2170)$信号,以及相应的$γ^{e^{e^{+} e^{ - }}} _ {ϕ(2170)} \ cdot {\ cdot {\ cal b}(\ cal b}(\ cal b}(2170)$ 0. EV} $(两个拟合),或$ 18.6〜 {\ rm EV} $(剩余两个拟合),以90%的置信度。
Using $980~fb^{-1}$ of data collected on and around the $Υ(nS)(n=1,2,3,4,5)$ resonances with the Belle detector at the KEKB collider, we measure the cross section of $e^{+}e^{-}\to ηϕ$ from threshold to $3.95~{\rm GeV}/c^{2}$ via initial-state radiation. From a multi-parameter fit assuming $ϕ(2170)$ exists in the $ηϕ$ final state according to previous measurement by BESIII, the resonant parameters of $ϕ(1680)$ are determined to be $m_{ϕ(1680)} = (1683 \pm 7 \pm 9)~{\rm MeV}/c^{2}$ (statistical and systematic errors, respectively), $Γ_{ϕ(1680)} = (149 \pm 12 \pm 13)~{\rm MeV}$ and, depending on the possible presence of interfering resonances, $Γ^{e^{+}e^{-}}_{ϕ(1680)}\cdot {\cal B}[ϕ(1680)\toηϕ] = (122 \pm 6 \pm 13)~{\rm eV}$, $(219 \pm 15 \pm 18)~{\rm eV}$, $(163 \pm 11 \pm 13)~{\rm eV}$ or $(203 \pm 12 \pm 18)~{\rm eV}$. The branching fraction of $ϕ(1680)\toηϕ$ decay is determined to be approximately 20%. Additionally, the branching fraction for $J/ψ\toηϕ$ is measured to be $(7.1\pm 1.0 \pm 0.5)\times 10^{-4}$. However, there is no significant observed $ϕ(2170)$ signal in the $ηϕ$ final states in this analysis, and correspondingly the upper limit for $Γ^{e^{+}e^{-}}_{ϕ(2170)}\cdot {\cal B}(ϕ(2170)\toηϕ)$ is determined to be either $0.17~{\rm eV}$ (for two fits), or $18.6~{\rm eV}$ (remaining two fits), at 90% confidence level.