论文标题

PCDNF:通过关节正常过滤重新访问基于学习的点云

PCDNF: Revisiting Learning-based Point Cloud Denoising via Joint Normal Filtering

论文作者

Liu, Zheng, Zhao, Yaowu, Zhan, Sijing, Liu, Yuanyuan, Chen, Renjie, He, Ying

论文摘要

从嘈杂的点云中恢复高质量的表面,称为点云降解,是几何处理中的一个基本而又具有挑战性的问题。大多数现有方法要么直接将嘈杂的输入或过滤器原始正态变为更新点位置。由点云降解和正常过滤之间的基本相互作用的动机,我们从多任务的角度重新访问点云,并提出一个名为PCDNF的端到端网络,通过关节正常滤波来denoise点云。特别是,我们引入了一项辅助普通过滤任务,以帮助整体网络更有效地消除噪声,同时更准确地保留几何特征。除了整体体系结构外,我们的网络还具有两个新颖的模块。一方面,为了提高降噪性能,我们设计了一种形状感知的选择器,以全面考虑学习点,正常特征和几何学先验,以构建特定点的潜在切线空间表示。另一方面,点特征更适合描述几何细节,正常特征更有利于表示几何结构(例如,边缘和角落)。结合点和正常特征使我们能够克服它们的弱点。因此,我们将功能改进模块设计为融合点和正常功能,以更好地恢复几何信息。广泛的评估,比较和消融研究表明,所提出的方法优于最先进的点云降解和正常过滤。

Recovering high quality surfaces from noisy point clouds, known as point cloud denoising, is a fundamental yet challenging problem in geometry processing. Most of the existing methods either directly denoise the noisy input or filter raw normals followed by updating point positions. Motivated by the essential interplay between point cloud denoising and normal filtering, we revisit point cloud denoising from a multitask perspective, and propose an end-to-end network, named PCDNF, to denoise point clouds via joint normal filtering. In particular, we introduce an auxiliary normal filtering task to help the overall network remove noise more effectively while preserving geometric features more accurately. In addition to the overall architecture, our network has two novel modules. On one hand, to improve noise removal performance, we design a shape-aware selector to construct the latent tangent space representation of the specific point by comprehensively considering the learned point and normal features and geometry priors. On the other hand, point features are more suitable for describing geometric details, and normal features are more conducive for representing geometric structures (e.g., sharp edges and corners). Combining point and normal features allows us to overcome their weaknesses. Thus, we design a feature refinement module to fuse point and normal features for better recovering geometric information. Extensive evaluations, comparisons, and ablation studies demonstrate that the proposed method outperforms state-of-the-arts for both point cloud denoising and normal filtering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源