论文标题

使用案例说明信息,以减少对暴露的偏见的偏见的敏感性

Using Case Description Information to Reduce Sensitivity to Bias for the Attributable Fraction Among the Exposed

论文作者

Chen, Kan, Cheng, Jing, Halloran, M. Elizabeth, Small, Dylan S.

论文摘要

暴露的(\ textbf {af} $ _ e $)之间的可归因分数,也称为暴露的归因风险或过量分数,是可以通过消除暴露的暴露案件中疾病案例的比例。了解\ textbf {af} $ _ e $用于不同暴露有助于指导公共卫生干预措施。 \ textbf {af} $ _ $推断的常规方法假设没有任何混淆,并且可能对未观察到的协变量的隐藏偏见敏感。在本文中,我们提出了一种新方法,以减少对\ textbf {af} $ _ e $进行统计推断的隐藏偏见的敏感性,并利用案例描述信息。案例描述信息是描述病例的信息,例如癌症的亚型。与其他类型相比,该暴露可能对某些类型的情况有更多的影响。我们探讨了利用案例描述信息如何通过通过渐近工具,设计灵敏度和仿真研究从无法衡量的混淆中降低对偏见的敏感性。我们允许利用案例定义信息可以通过其他灵敏度参数引入其他选择偏见的可能性。使用妇女健康倡议(WHI)观察研究(OS)的数据,使用案例描述有关癌症亚型(激素对激素敏感或不敏感)的案例描述信息的信息来说明所提出的方法来说明这一方法论。

The attributable fraction among the exposed (\textbf{AF}$_e$), also known as the attributable risk or excess fraction among the exposed, is the proportion of disease cases among the exposed that could be avoided by eliminating the exposure. Understanding the \textbf{AF}$_e$ for different exposures helps guide public health interventions. The conventional approach to inference for the \textbf{AF}$_e$ assumes no unmeasured confounding and could be sensitive to hidden bias from unobserved covariates. In this paper, we propose a new approach to reduce sensitivity to hidden bias for conducting statistical inference on the \textbf{AF}$_e$ by leveraging case description information. Case description information is information that describes the case, e.g., the subtype of cancer. The exposure may have more of an effect on some types of cases than other types. We explore how leveraging case description information can reduce sensitivity to bias from unmeasured confounding through an asymptotic tool, design sensitivity, and simulation studies. We allow for the possibility that leveraging case definition information may introduce additional selection bias through an additional sensitivity parameter. The proposed methodology is illustrated by re-examining alcohol consumption and the risk of postmenopausal invasive breast cancer using case description information on the subtype of cancer (hormone-sensitive or insensitive) using data from the Women's Health Initiative (WHI) Observational Study (OS).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源