论文标题
耐伪影的聚类引导的对比度嵌入学习的膜片图像
Artifact-Tolerant Clustering-Guided Contrastive Embedding Learning for Ophthalmic Images
论文作者
论文摘要
眼科图像和衍生物,例如视网膜神经纤维层(RNFL)厚度图对于检测和监测眼科疾病至关重要(例如,青光眼)。为了诊断眼病的计算机辅助诊断,关键技术是从眼科图像中自动提取有意义的特征,这些特征可以揭示与功能视觉丧失相关的生物标志物(例如RNFL变薄模式)。然而,将结构性视网膜损害与人类视力丧失联系起来的眼科图像中的表示,主要是由于患者之间的解剖学变化很大。在存在图像伪像的情况下,这项任务变得更加具有挑战性,由于图像采集和自动细分,这很常见。在本文中,我们提出了一个耐受耐受的无监督学习框架,该框架称为眼科图像的学习表示。 Eyelearn具有一个伪影校正模块,可以学习可以最好地预测无伪影眼镜图像的表示形式。此外,Eyelearn采用聚类引导的对比度学习策略,以明确捕获内部和间形的亲和力。在训练过程中,图像在簇中动态组织,以形成对比样品,其中鼓励在相同或不同的簇中分别学习相似或不同的表示形式。为了评估包眼,我们使用学识处的表示形式使用青光眼患者的现实世界情化学图像数据集进行视野预测和青光眼检测。广泛的实验和与最先进方法的比较验证了眼球从眼科图像中学习最佳特征表示的有效性。
Ophthalmic images and derivatives such as the retinal nerve fiber layer (RNFL) thickness map are crucial for detecting and monitoring ophthalmic diseases (e.g., glaucoma). For computer-aided diagnosis of eye diseases, the key technique is to automatically extract meaningful features from ophthalmic images that can reveal the biomarkers (e.g., RNFL thinning patterns) linked to functional vision loss. However, representation learning from ophthalmic images that links structural retinal damage with human vision loss is non-trivial mostly due to large anatomical variations between patients. The task becomes even more challenging in the presence of image artifacts, which are common due to issues with image acquisition and automated segmentation. In this paper, we propose an artifact-tolerant unsupervised learning framework termed EyeLearn for learning representations of ophthalmic images. EyeLearn has an artifact correction module to learn representations that can best predict artifact-free ophthalmic images. In addition, EyeLearn adopts a clustering-guided contrastive learning strategy to explicitly capture the intra- and inter-image affinities. During training, images are dynamically organized in clusters to form contrastive samples in which images in the same or different clusters are encouraged to learn similar or dissimilar representations, respectively. To evaluate EyeLearn, we use the learned representations for visual field prediction and glaucoma detection using a real-world ophthalmic image dataset of glaucoma patients. Extensive experiments and comparisons with state-of-the-art methods verified the effectiveness of EyeLearn for learning optimal feature representations from ophthalmic images.