论文标题
使用残余卷积神经网络在存在多径干扰的情况下,模型顺序估计
Model Order Estimation in the Presence of multipath Interference using Residual Convolutional Neural Networks
论文作者
论文摘要
模型顺序估计(MOE)通常是到达方向(DOA)估计的前提条件。由于阵列几何形状施加的限制,通常无法估算任意数量来源的空间参数。通常需要对信号模型进行估计。 MOE是从几个候选者中选择最可能的信号模型的过程。尽管在有一致的多径干扰的情况下,经典方法在MOE失败,但数据驱动的监督学习模型可以解决此问题。我们提出了剩余的卷积神经网络(RCNN)的应用,而不是经典的MLP(多层感知)或CNN(卷积神经网络)体系结构,并具有分组的对称内核过滤器来提供最高的先进估计精度,该精度高达95.2 \%,在较少的多疗法损失的情况下,以较高的多疗法和不足的重量损失功能,以使量不足和不断变化的损失功能。我们通过证明其对确定阵列收到的总信号数量的总体信号处理流的影响来显示该方法的好处,该信号的数量,独立源的数量以及每个路径与这些源的关联。此外,我们表明,所提出的估计器在各种数组类型上提供了准确的性能,可以识别过载的场景,并最终提供强大的DOA估计和信号关联性能。
Model order estimation (MOE) is often a pre-requisite for Direction of Arrival (DoA) estimation. Due to limits imposed by array geometry, it is typically not possible to estimate spatial parameters for an arbitrary number of sources; an estimate of the signal model is usually required. MOE is the process of selecting the most likely signal model from several candidates. While classic methods fail at MOE in the presence of coherent multipath interference, data-driven supervised learning models can solve this problem. Instead of the classic MLP (Multiple Layer Perceptions) or CNN (Convolutional Neural Networks) architectures, we propose the application of Residual Convolutional Neural Networks (RCNN), with grouped symmetric kernel filters to deliver state-of-art estimation accuracy of up to 95.2\% in the presence of coherent multipath, and a weighted loss function to eliminate underestimation error of the model order. We show the benefit of the approach by demonstrating its impact on an overall signal processing flow that determines the number of total signals received by the array, the number of independent sources, and the association of each of the paths with those sources . Moreover, we show that the proposed estimator provides accurate performance over a variety of array types, can identify the overloaded scenario, and ultimately provides strong DoA estimation and signal association performance.