论文标题

几乎共同平坦度量〜空间的球形对称重力解

A spherically symmetric gravitational solution of nearly conformally flat metric~measure~space

论文作者

Oghbaiee, Samaneh, Rahmanpour, Nafiseh, Shojaie, Hossein

论文摘要

在本手稿中,我们研究了公制测量空间(MMS)中形式不变的引力理论的几乎平坦的近似。此外,我们在这种情况下研究了能量量张量的转换,并获得了MMS的真空溶液及其在球形对称坐标中的弱场极限。我们表明,尽管它已经是一种真空解决方案,但它可以模拟深色物质,仅限于一般相对论的框架,即对对称性的保形框架。这是通过采用密度函数来完成的,这是MMS的重要组成部分。我们得出了从观测值获得的旋转曲线的一般曲线的密度函数的方程。具体而言,提供了对应于两个众所周知的PSS和NFW的密度函数。

In this manuscript, we study the nearly flat approximation of a conformally invariant gravitational theory in metric measure space (MMS). In addition, we investigate the transformation of the energy-momentum tensor in this context and obtain the vacuum solution of MMS and its weak field limit in the spherically symmetric coordinates. We show that while it is already a vacuum solution, it can simulate dark matter when restricted to the framework of general relativity, i.e., a symmetry-broken conformal frame. This is done by employing a density function which is an essential part of MMS. We derive an equation for the density function for a general profile of a rotation curve obtained from observations. Specifically, the density function corresponding to two well-known profiles PSS and NFW are provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源