论文标题
基本小组代数的雅各比代数演示
Jacobi algebra presentations for fundamental group algebras
论文作者
论文摘要
我们证明了戴维森的猜想的特殊情况,它与基本组代数$ k [π_1(x)] $的超电势描述有关。我们认为,歧管$ x $是映射圆环$ m_ {g,φ} $的属$ g $ g $ riemann surface $σ_g$和有限的订单自动形态$φ$,超大电势结构由具有潜在潜力的Jacobi Algebra给出。
We prove a special case of a conjecture of Davison which pertains to superpotential descriptions of fundamental group algebras $k[π_1(X)]$. We consider the case in which the manifold $X$ is the mapping torus $M_{g, φ}$ of a genus $g$ Riemann surface $Σ_g$ and a finite order automorphism $φ$, and the superpotential structure is given by the Jacobi algebra of a quiver with potential.