论文标题
统一拓扑中Schramm-loewner进化的大偏差原理
A large deviation principle for the Schramm-Loewner evolution in the uniform topology
论文作者
论文摘要
我们建立了由容量参数的弦SLE $_κ$的大偏差原理,作为参数$κ\至0+$,这是由统一收敛产生的拓扑,以正面真实线的紧凑间隔产生。速率函数显示出等于曲线的Loewner能量。这加强了使用Hausdorff拓扑结构获得的类似陈述的最近的E. Peltola和Y. Wang的结果。
We establish a large deviation principle for chordal SLE$_κ$ parametrized by capacity, as the parameter $κ\to 0+$, in the topology generated by uniform convergence on compact intervals of the positive real line. The rate function is shown to equal the Loewner energy of the curve. This strengthens the recent result of E. Peltola and Y. Wang who obtained the analogous statement using the Hausdorff topology.