论文标题

跨光谱神经辐射场

Cross-Spectral Neural Radiance Fields

论文作者

Poggi, Matteo, Ramirez, Pierluigi Zama, Tosi, Fabio, Salti, Samuele, Mattoccia, Stefano, Di Stefano, Luigi

论文摘要

我们提出了X-NERF,这是一种基于神经辐射场公式,从具有不同光谱灵敏度的相机捕获的跨光谱场景表示的新方法,给出了X-NERF。 X-NERF在训练过程中优化了整个光谱的相机姿势,并利用归一化的跨设备坐标(NXDC)从任意观点来渲染不同模态的图像,这些观点是对齐的,并以相同的分辨率对齐。在16个面向前面的场景上进行的实验,具有颜色,多光谱和红外图像,证实了X-NERF在建模跨光谱场景表示方面的有效性。

We propose X-NeRF, a novel method to learn a Cross-Spectral scene representation given images captured from cameras with different light spectrum sensitivity, based on the Neural Radiance Fields formulation. X-NeRF optimizes camera poses across spectra during training and exploits Normalized Cross-Device Coordinates (NXDC) to render images of different modalities from arbitrary viewpoints, which are aligned and at the same resolution. Experiments on 16 forward-facing scenes, featuring color, multi-spectral and infrared images, confirm the effectiveness of X-NeRF at modeling Cross-Spectral scene representations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源