论文标题

通过机器学习预测混合物的热力学模型:矩阵的完成成对相互作用

Making Thermodynamic Models of Mixtures Predictive by Machine Learning: Matrix Completion of Pair Interactions

论文作者

Jirasek, Fabian, Bamler, Robert, Fellenz, Sophie, Bortz, Michael, Kloft, Marius, Mandt, Stephan, Hasse, Hans

论文摘要

混合物热力学特性的预测模型在化学工程和化学中至关重要。经典的热力学模型成功地概括了(连续)条件,例如温度和浓度。另一方面,机器学习的矩阵完成方法(MCM)成功地概括了(离散)二进制系统;这些MCM可以通过隐式学习系统中的共同点,而无需对给定二进制系统进行任何数据进行预测。在目前的工作中,我们将两者的优势结合在一起。潜在的想法是预测成对的交互能,因为它们基本上是通过MCM用于所有物理模型中的。例如,我们将MCM嵌入了Uniquac,这是Gibbs多余能量的广泛使用的物理模型。我们在贝叶斯机器学习框架中训练所得的混合模型,以实验数据,以从多特蒙德数据库中的1146个组件的二进制系统中的活动系数进行训练。因此,我们首次获得了这些组件的所有二进制系统的完整集合参数,这使我们可以原则上预测这些组件的任何组合在任意温度和组成下的活性系数,不仅是二进制的,而且对于多组分系统。混合模型甚至优于预测活动系数的最佳可用物理模型,即修改的UNIFAC(Dortmund)模型。

Predictive models of thermodynamic properties of mixtures are paramount in chemical engineering and chemistry. Classical thermodynamic models are successful in generalizing over (continuous) conditions like temperature and concentration. On the other hand, matrix completion methods (MCMs) from machine learning successfully generalize over (discrete) binary systems; these MCMs can make predictions without any data for a given binary system by implicitly learning commonalities across systems. In the present work, we combine the strengths of both worlds in a hybrid approach. The underlying idea is to predict the pair-interaction energies, as they are used in basically all physical models of liquid mixtures, by an MCM. As an example, we embed an MCM into UNIQUAC, a widely-used physical model for the Gibbs excess energy. We train the resulting hybrid model in a Bayesian machine-learning framework on experimental data for activity coefficients in binary systems of 1146 components from the Dortmund Data Bank. We thereby obtain, for the first time, a complete set of UNIQUAC parameters for all binary systems of these components, which allows us to predict, in principle, activity coefficients at arbitrary temperature and composition for any combination of these components, not only for binary but also for multicomponent systems. The hybrid model even outperforms the best available physical model for predicting activity coefficients, the modified UNIFAC (Dortmund) model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源