论文标题
浸入挤压的轻玻璃系统中的两个重型杂质
Two-heavy impurities immersed in squeezed light-boson systems
论文作者
论文摘要
我们通过Born-Oppenheimer近似研究研究了在d维度中浸入光玻色子系统中的两个重骨杂质的光谱和结构。分数维度依赖性与挤压陷阱有关。当重照明系统具有S波谐振相互作用时,结合能遵循EFIMOV型几何缩放定律,而有效的尺寸或陷阱变形在给定范围内。离散的缩放参数$ s $根据质量不对称,轻玻璃数和有效尺寸的连续多体结合状态。为了举例说明我们的结果,我们考虑了与多达两米岩相互作用的两个重纤维原子的混合物,这些原子是当前实验感兴趣的系统。
We investigate the spectrum and structure of two-heavy bosonic impurities immersed in a light-boson system in D dimensions by means of the Born-Oppenheimer approximation. The fractional dimension dependence are associated with squeezed traps. The binding energies follows an Efimov type geometrical scaling law when the heavy-light system has a s-wave resonant interaction and the effective dimension or trap deformation is within a given range. The discrete scaling parameter $s$ relates two consecutive many-body bound states depending on mass asymmetry, number of light-bosons and effective dimension D. Furthermore, the spectrum and wave-function for finite heavy-light binding energies are computed. To exemplify our results, we consider mixtures of two-heavy caesium atoms interacting with up to two-lithium ones, which are systems of current experimental interest.