论文标题

远见:一个现实的人类运动转移的区域到整个框架

REMOT: A Region-to-Whole Framework for Realistic Human Motion Transfer

论文作者

Yang, Quanwei, Liu, Xinchen, Liu, Wu, Xie, Hongtao, Gu, Xiaoyan, Yu, Lingyun, Zhang, Yongdong

论文摘要

人类视频运动转移(HVMT)的目的是鉴于源头的形象,生成了他/她的视频,以模仿驾驶人员的运动。 HVMT的现有方法主要利用生成对抗网络(GAN),以根据根据源人员图像和每个驾驶视频框架估计的流量来执行翘曲操作。但是,由于源头,尺度和驾驶人员之间的巨大差异,这些方法总是会产生明显的人工制品。为了克服这些挑战,本文介绍了基于gan的新区域到整个人类运动转移(远征)框架。为了产生逼真的动作,远遥采用了渐进的一代范式:它首先在没有基于流动的翘曲的情况下生成每个身体的零件,然后将所有零件变成驾驶运动的完整人。此外,为了保留自然的全球外观,我们设计了一个全球对齐模块,以根据其布局与驾驶员的规模和位置保持一致。此外,我们提出了一个纹理对准模块,以使人的每个部分都根据纹理的相似性对齐。最后,通过广泛的定量和定性实验,我们的远遥实验在两个公共基准上取得了最先进的结果。

Human Video Motion Transfer (HVMT) aims to, given an image of a source person, generate his/her video that imitates the motion of the driving person. Existing methods for HVMT mainly exploit Generative Adversarial Networks (GANs) to perform the warping operation based on the flow estimated from the source person image and each driving video frame. However, these methods always generate obvious artifacts due to the dramatic differences in poses, scales, and shifts between the source person and the driving person. To overcome these challenges, this paper presents a novel REgionto-whole human MOtion Transfer (REMOT) framework based on GANs. To generate realistic motions, the REMOT adopts a progressive generation paradigm: it first generates each body part in the driving pose without flow-based warping, then composites all parts into a complete person of the driving motion. Moreover, to preserve the natural global appearance, we design a Global Alignment Module to align the scale and position of the source person with those of the driving person based on their layouts. Furthermore, we propose a Texture Alignment Module to keep each part of the person aligned according to the similarity of the texture. Finally, through extensive quantitative and qualitative experiments, our REMOT achieves state-of-the-art results on two public benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源