论文标题
多跳颞开关的野外步态识别
Gait Recognition in the Wild with Multi-hop Temporal Switch
论文作者
论文摘要
现有的步态识别研究以实验室场景为主。由于人们生活在现实世界中,因此野外的步态识别是一个更实用的问题,最近引起了多媒体和计算机视觉社区的关注。在最近提出的野外数据集上获得最新性能的当前方法在实验室基准上获得了更差的准确性,因为这些方法几乎无法模拟不受约束场景中步态序列的各种时间动力学。因此,本文提出了一种新型的多跳时间开关方法,以实现实际场景中步态模式的有效时间建模。具体而言,我们设计了一个新颖的步态识别网络,称为多跳临时开关网络(MTSGait),以同时学习空间特征和多尺度的时间特征。与现有的3D卷积进行时间建模的方法不同,我们的MTSGAIT通过2D卷积对步态序列的时间动力学进行建模。通过这种方式,与基于3D基于3D的模型相比,它可以通过更少的模型参数实现高效率,并减少了优化的难度。基于2D卷积内核的特定设计,我们的方法可以消除相邻帧之间特征的不对准。此外,提出了一种新的抽样策略,即非环保连续采样,以使模型学习更强大的时间特征。最后,与最先进的方法相比,提出的方法在两个公共步态的野外数据集(即增长和步态3D)上取得了出色的性能。
Existing studies for gait recognition are dominated by in-the-lab scenarios. Since people live in real-world senses, gait recognition in the wild is a more practical problem that has recently attracted the attention of the community of multimedia and computer vision. Current methods that obtain state-of-the-art performance on in-the-lab benchmarks achieve much worse accuracy on the recently proposed in-the-wild datasets because these methods can hardly model the varied temporal dynamics of gait sequences in unconstrained scenes. Therefore, this paper presents a novel multi-hop temporal switch method to achieve effective temporal modeling of gait patterns in real-world scenes. Concretely, we design a novel gait recognition network, named Multi-hop Temporal Switch Network (MTSGait), to learn spatial features and multi-scale temporal features simultaneously. Different from existing methods that use 3D convolutions for temporal modeling, our MTSGait models the temporal dynamics of gait sequences by 2D convolutions. By this means, it achieves high efficiency with fewer model parameters and reduces the difficulty in optimization compared with 3D convolution-based models. Based on the specific design of the 2D convolution kernels, our method can eliminate the misalignment of features among adjacent frames. In addition, a new sampling strategy, i.e., non-cyclic continuous sampling, is proposed to make the model learn more robust temporal features. Finally, the proposed method achieves superior performance on two public gait in-the-wild datasets, i.e., GREW and Gait3D, compared with state-of-the-art methods.