论文标题
$ f \ left(q \右)$对称远程引力与兰伯特功能分布
Barrow holographic dark energy models in $f\left( Q\right)$ symmetric teleparallel gravity with Lambert function distribution
论文作者
论文摘要
The paper presents Barrow holographic dark energy (infrared cut-off is the Hubble horizon) suggested by Barrow recently (Physics Letters B 808 (2020): 135643) in an anisotropic Bianchi type-I Universe within the framework of $% f\left( Q\right) $ symmetric teleparallel gravity, where the non-metricity scalar $Q$ is responsible for the gravitational interaction.我们考虑了两种情况:通过求解$ f \ left(q \右)$对称远程电视场方程,无需加压暗物质的相互作用和非相互作用模型。为了找到字段方程的确切解决方案,我们假设Time-Redshift关系遵循lambert函数分布,为$ t \ left(z \ right)= \ frac {mt_ {0}}} {l} {l} g \ lest(z \ weft(z \ weft)$ \ frac {l} {m} e^{\ frac {l- \ ln \ left(1+z \ right)} {m}}} \ right] $,$ m $和$ m $和$ l $是非阴性常数,而$ t_ {0} $代表宇宙的时代。此外,我们讨论了几个宇宙学参数,例如能量密度,状态方程(EOS)和偏度参数,平方的音速以及$(ω________________________________{b}^{^^{\ prime}})$ plane。最后,我们发现兰伯特功能分布的减速参数(DP)的值为$ q _ {(z = 0)} = - 0.45 $和$ q _ {(z = -1)} = - 1 $,与最新观察数据一致,即DP evolves与最初的DP evolves,即从初始时间到最初的时间效率。
The paper presents Barrow holographic dark energy (infrared cut-off is the Hubble horizon) suggested by Barrow recently (Physics Letters B 808 (2020): 135643) in an anisotropic Bianchi type-I Universe within the framework of $% f\left( Q\right) $ symmetric teleparallel gravity, where the non-metricity scalar $Q$ is responsible for the gravitational interaction. We consider two cases: Interacting and non-interacting models of pressureless dark matter and Barrow holographic dark energy by solving $f\left( Q\right) $ symmetric teleparallel field equations. To find the exact solutions of the field equations, we assume that the time-redshift relation follows a Lambert function distribution as $t\left( z\right) =\frac{mt_{0}}{l}g\left( z\right) $, where $g\left( z\right) =LambertW\left[ \frac{l}{m}e^{\frac{l-\ln \left( 1+z\right) }{m}}\right] $, $m$ and $l$ are non-negative constants and $t_{0}$ represents the age of the Universe. Moreover, we discuss several cosmological parameters such as energy density, equation of state (EoS) and skewness parameters, squared sound speed, and $(ω_{B}-ω_{B}^{^{\prime }})$ plane. Finally, we found the values of the deceleration parameter (DP) for the Lambert function distribution as $q_{(z=0)}=-0.45$ and $q_{(z=-1)}=-1$ which are consistent with recent observational data, i.e. DP evolves with cosmic time from initial deceleration to late-time acceleration.