论文标题

最大封闭子字符串

Maximal Closed Substrings

论文作者

Badkobeh, Golnaz, De Luca, Alessandro, Fici, Gabriele, Puglisi, Simon

论文摘要

如果字符串的长度为1或具有非内部事件的非空边框,则关闭。在本文中,我们介绍了\ emph {maximal封闭的子字符串}(MCS)的定义,这是封闭的子字符串的发生,该封闭的子字符串无法向左或右侧扩展到较长的封闭子字符串。具有指数至少$ 2 $的MCS通常称为\ emph {runs};相反,那些指数小于$ 2 $的人是\ emph {maximal Gapped重复}的特定情况。我们提供了一种算法,在给定长度$ n $的字符串中,该字符串包含在$ \ MATHCAL O(n \ log n)$ time中。

A string is closed if it has length 1 or has a nonempty border without internal occurrences. In this paper we introduce the definition of a \emph{maximal closed substring} (MCS), which is an occurrence of a closed substring that cannot be extended to the left nor to the right into a longer closed substring. MCSs with exponent at least $2$ are commonly called \emph{runs}; those with exponent smaller than $2$, instead, are particular cases of \emph{maximal gapped repeats}. We provide an algorithm that, given a string of length $n$ locates all MCSs the string contains in $\mathcal O(n\log n)$ time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源