论文标题

反射介电腔增强了六角形氮化硼自旋缺陷阵列的发射

Reflective Dielectric Cavity Enhanced Emission from Hexagonal Boron Nitride Spin Defect Arrays

论文作者

Zeng, Xiao-Dong, Yang, Yuan-Ze, Guo, Nai-Jie, Li, Zhi-Peng, Wang, Zhao-An, Xie, Lin-Ke, Yu, Shang, Meng, Yu, Li, Qiang, Xu, Jin-Shi, Liu, Wei, Wang, Yi-Tao, Tang, Jian-Shun, Li, Chuan-Feng, Guo, Guang-Can

论文摘要

在HBN中的各种自旋缺陷中,可以确定性产生的负电荷的硼空缺($ \ rm v_b^ - $)旋转缺陷无疑是量子感应的潜在候选者,但其低量子效率限制了其在实际应用中的%使用。在这里,我们展示了一种强大的增强结构,具有优势,包括易于芯片的集成,方便的处理,低成本和适合$ \ rm v_b^ - $缺陷的合适的广谱增强。 %改进的光致发光(PL)强度和光学检测到的磁共振(ODMR)对比度为$ \ rm v_b^ - $缺陷阵列。在实验中,我们在HBN薄片下使用了金属反射层,中间充满了过渡介电层,并调整了介电层的厚度,以达到反射介电腔与HBN旋转缺陷之间的最佳耦合。使用反射介电腔,我们实现了约7倍的PL增强,相应的ODMR对比度达到18%。此外,反射介电腔的氧化物层可以用作用于二级加工的微纳米光子设备的集成材料,这意味着它可以与其他增强结构结合使用,以实现更强的增强。这项工作对于实现二维材料中自旋缺陷的片段整合具有指导意义。

Among the various kinds of spin defects in hBN, the negatively charged boron vacancy ($\rm V_B^-$) spin defect that can be deterministically generated is undoubtedly a potential candidate for quantum sensing, but its low quantum efficiency restricts its %use in practical applications. Here, we demonstrate a robust enhancement structure with advantages including easy on-chip integration, convenient processing, low cost and suitable broad-spectrum enhancement for $\rm V_B^-$ defects. %Improved photoluminescence (PL) intensity and optically detected magnetic resonance (ODMR) contrast of $\rm V_B^-$ defect arrays. In the experiment, we used a metal reflective layer under the hBN flakes, filled with a transition dielectric layer in the middle, and adjusted the thickness of the dielectric layer to achieve the best coupling between the reflective dielectric cavity and the hBN spin defect. Using a reflective dielectric cavity, we achieved a PL enhancement of approximately 7-fold, and the corresponding ODMR contrast achieved 18\%. Additionally, the oxide layer of the reflective dielectric cavity can be used as an integrated material for micro-nano photonic devices for secondary processing, which means that it can be combined with other enhancement structures to achieve stronger enhancement. This work has guiding significance for realizing the on-chip integration of spin defects in two-dimensional materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源