论文标题

概率推论:一种概率结构性论证的方法

Probabilistic Deduction: an Approach to Probabilistic Structured Argumentation

论文作者

Fan, Xiuyi

论文摘要

本文介绍了概率推论(PD)作为概率结构性论证的一种方法。 PD框架由概率规则(P-Rules)组成。作为经典结构化论证框架的规则,P规则形成了扣除系统。此外,P规则还代表了定义关节概率分布的条件概率。使用PD框架,通过解决规则 - 稳定性的满意度来执行概率推理。同时,可以通过争论和攻击来获得概率推理的论点阅读。在这项工作中,我们介绍了封闭世界假设(P-CWA)的概率版本,并证明我们的概率方法与P-CWA下经典论证的完整扩展和最大的熵推理相吻合。我们提出了几种方法来计算P规则中的联合概率分布,以实现PD实用的证明理论。 PD提供了一个框架,可以用论证推理统一概率推理。这是概率结构化论证中的第一项工作,其中未假定联合分布形成外部来源。

This paper introduces Probabilistic Deduction (PD) as an approach to probabilistic structured argumentation. A PD framework is composed of probabilistic rules (p-rules). As rules in classical structured argumentation frameworks, p-rules form deduction systems. In addition, p-rules also represent conditional probabilities that define joint probability distributions. With PD frameworks, one performs probabilistic reasoning by solving Rule-Probabilistic Satisfiability. At the same time, one can obtain an argumentative reading to the probabilistic reasoning with arguments and attacks. In this work, we introduce a probabilistic version of the Closed-World Assumption (P-CWA) and prove that our probabilistic approach coincides with the complete extension in classical argumentation under P-CWA and with maximum entropy reasoning. We present several approaches to compute the joint probability distribution from p-rules for achieving a practical proof theory for PD. PD provides a framework to unify probabilistic reasoning with argumentative reasoning. This is the first work in probabilistic structured argumentation where the joint distribution is not assumed form external sources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源