论文标题

多维数据集基本覆盖的新下限

New Lower Bounds For Essential Covers Of The Cube

论文作者

Araujo, Igor, Balogh, József, Mattos, Letícia

论文摘要

$ n $ -cube $ \ {0,1 \}^n $的顶点的基本覆盖物是一个最小的覆盖物,其中没有超平面是冗余的,并且每个变量至少出现在一个至少一个超平面的方程中。 Linial和Radhakrishnan用$ \ lceil \ frac {n} {2} {2} \ rceil + 1 $ hyperplanes进行了基本封面的结构,并表明需要$ω(\ sqrt {n})$ hyperpranes。最近,Yehuda和Yehudayoff通过表明$ n $ -Cube的任何基本覆盖物至少包含$ω(n^{0.52})$超plans,改善了下限。在本文中,以Yehuda和Yehudayoff的方法为基础,我们证明了$ω\ left(\ frac {n^{5/9}}} {(\ log n)^{4/9}}} \ right)$ hyperplanes是需要的。

An essential cover of the vertices of the $n$-cube $\{0,1\}^n$ by hyperplanes is a minimal covering where no hyperplane is redundant and every variable appears in the equation of at least one hyperplane. Linial and Radhakrishnan gave a construction of an essential cover with $\lceil \frac{n}{2} \rceil + 1$ hyperplanes and showed that $Ω(\sqrt{n})$ hyperplanes are required. Recently, Yehuda and Yehudayoff improved the lower bound by showing that any essential cover of the $n$-cube contains at least $Ω(n^{0.52})$ hyperplanes. In this paper, building on the method of Yehuda and Yehudayoff, we prove that $Ω\left( \frac{n^{5/9}}{(\log n)^{4/9}} \right)$ hyperplanes are needed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源