论文标题

多维Keller-Segel趋化系统中学习和生成聚集模式的vepparticle方法

A DeepParticle method for learning and generating aggregation patterns in multi-dimensional Keller-Segel chemotaxis systems

论文作者

Wang, Zhongjian, Xin, Jack, Zhang, Zhiwen

论文摘要

我们研究了一种用于计算聚集模式的正则相互作用粒子方法,以及在两个和三个空间维度中的凯勒 - 渗透(KS)趋化系统的近乎奇异溶液,然后进一步开发出在物理参数变化下学习和生成溶液的Deepparticle(DP)方法。 KS溶液被近似为颗粒的经验度量,这些粒子自适应溶液的高梯度部分。我们利用深神经网络(DNN)的表现力来表示样品从给定的初始(源)分布到有限时间t之前的目标分布的变换,而无需假设变换的可逆性。在训练阶段,我们通过最大程度地减少输入和目标经验措施之间的离散2-wasserstein距离来更新网络权重。为了降低计算成本,我们开发了一种迭代性分裂和诱导算法,以在Wasserstein距离中找到最佳的过渡矩阵。我们提出了在层流和混乱流的存在下成功学习和生成KS动力学的DP框架的数值结果。这项工作中的物理参数是化学吸引者的较小扩散率,或者是在以对流为主的方向中的流量幅度的相互差异。

We study a regularized interacting particle method for computing aggregation patterns and near singular solutions of a Keller-Segal (KS) chemotaxis system in two and three space dimensions, then further develop DeepParticle (DP) method to learn and generate solutions under variations of physical parameters. The KS solutions are approximated as empirical measures of particles which self-adapt to the high gradient part of solutions. We utilize the expressiveness of deep neural networks (DNNs) to represent the transform of samples from a given initial (source) distribution to a target distribution at finite time T prior to blowup without assuming invertibility of the transforms. In the training stage, we update the network weights by minimizing a discrete 2-Wasserstein distance between the input and target empirical measures. To reduce computational cost, we develop an iterative divide-and-conquer algorithm to find the optimal transition matrix in the Wasserstein distance. We present numerical results of DP framework for successful learning and generation of KS dynamics in the presence of laminar and chaotic flows. The physical parameter in this work is either the small diffusivity of chemo-attractant or the reciprocal of the flow amplitude in the advection-dominated regime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源