论文标题
使用整数线性编程与周期中的图表中的最小流量分解
Minimum Flow Decomposition in Graphs with Cycles using Integer Linear Programming
论文作者
论文摘要
最小流量分解(MFD) - 找到完美分解流的最低加权源对源路径的问题是计算机科学中的经典问题,它的变体是不同领域的强大模型,例如生物信息学和运输。即使在无环形图上,问题也是NP硬化,大多数实用的解决方案是通过启发式或近似值。虽然当前对无环图有广泛的研究,但在带有周期的图上没有\ emph {Exact}解决方案。在本文中,我们介绍了带有周期图的三种自然变体的第一个自然变体的ILP公式,要求分别由加权源到链接路径或周期,步道和步行组成。在生物信息学和运输的三个数据集中,我们的方法在不到10分钟的时间内解决了任何实例。我们的实现可在github.com/algbio/mfd-ilp上免费获得。
Minimum flow decomposition (MFD) -- the problem of finding a minimum set of weighted source-to-sink paths that perfectly decomposes a flow -- is a classical problem in Computer Science, and variants of it are powerful models in different fields such as Bioinformatics and Transportation. Even on acyclic graphs, the problem is NP-hard, and most practical solutions have been via heuristics or approximations. While there is an extensive body of research on acyclic graphs, currently, there is no \emph{exact} solution on graphs with cycles. In this paper, we present the first ILP formulation for three natural variants of the MFD problem in graphs with cycles, asking for a decomposition consisting only of weighted source-to-sink paths or cycles, trails, and walks, respectively. On three datasets of increasing levels of complexity from both Bioinformatics and Transportation, our approaches solve any instance in under 10 minutes. Our implementations are freely available at github.com/algbio/MFD-ILP.