论文标题
学习多尺度非平稳因果结构
Learning Multiscale Non-stationary Causal Structures
论文作者
论文摘要
本文通过提供一种解决因果关系的解决方案来解决艺术现行状态的差距,这些解决方案会随着时间的流逝而发展并在不同的时间尺度上发生。具体而言,我们介绍了多尺度非平稳的定向无环图(MN-DAG),该图是建模多元时间序列数据的框架。我们的贡献是双重的。首先,我们通过利用光谱和因果理论的结果来揭示概率生成模型。我们的模型允许根据用户指定的先验对因果图的时间依赖性和多尺度属性进行采样。其次,我们设计了一种贝叶斯方法,称为多尺度非平稳因果结构学习者(MN-Castle),该方法使用随机变异推断来估计Mn-DAG。该方法还利用不同时间分辨率的时间序列之间的局部部分相关性利用信息。从MN-DAG生成的数据会在不同域中重现时间序列的众所周知的特征,例如挥发性聚类和串行相关性。此外,与基线模型相比,我们在具有不同的多尺度和非平稳特性的合成数据上显示了MN castle的出色性能。最后,我们应用MN广播来确定美国市场天然气价格的驱动因素。在19日疫情和俄罗斯对乌克兰的入侵期间,因果关系得到了加强,这一事实是基线方法未能捕获。 MN-Castle确定了关键经济驱动因素对天然气价格的因果影响,例如季节性因素,经济不确定性,石油价格和天然气存储偏差。
This paper addresses a gap in the current state of the art by providing a solution for modeling causal relationships that evolve over time and occur at different time scales. Specifically, we introduce the multiscale non-stationary directed acyclic graph (MN-DAG), a framework for modeling multivariate time series data. Our contribution is twofold. Firstly, we expose a probabilistic generative model by leveraging results from spectral and causality theories. Our model allows sampling an MN-DAG according to user-specified priors on the time-dependence and multiscale properties of the causal graph. Secondly, we devise a Bayesian method named Multiscale Non-stationary Causal Structure Learner (MN-CASTLE) that uses stochastic variational inference to estimate MN-DAGs. The method also exploits information from the local partial correlation between time series over different time resolutions. The data generated from an MN-DAG reproduces well-known features of time series in different domains, such as volatility clustering and serial correlation. Additionally, we show the superior performance of MN-CASTLE on synthetic data with different multiscale and non-stationary properties compared to baseline models. Finally, we apply MN-CASTLE to identify the drivers of the natural gas prices in the US market. Causal relationships have strengthened during the COVID-19 outbreak and the Russian invasion of Ukraine, a fact that baseline methods fail to capture. MN-CASTLE identifies the causal impact of critical economic drivers on natural gas prices, such as seasonal factors, economic uncertainty, oil prices, and gas storage deviations.