论文标题

通过几何方法对多元极端的统计推断

Statistical inference for multivariate extremes via a geometric approach

论文作者

Wadsworth, Jennifer, Campbell, Ryan

论文摘要

最近已证明,基于光尾边缘及其所谓的极限集的缩放样品云的形状的多元极端的几何表示,最近已证明可以连接几种现有的极端依赖概念。但是,这些结果纯粹是概率的,几何方法本身并未完全利用用于统计推断。我们概述了限制设置形状参数估计的方法,该方法包括有用的非/半参数估计作为预处理步骤。从根本上讲,我们的方法为多元分布的尾巴提供了一类新的渐近动机统计模型,并且这种模型可以通过限制集合形状的适当参数形式来适应同时或非同时极端的任何组合。通过拟合模型的模拟,可以进一步推断出分布的尾部。一项模拟研究证实,我们的方法与现有方法非常有竞争力,并且可以成功估算其他方法挣扎的地区的小概率。我们将方法应用于两个环境数据集,诊断证明了良好的拟合度。

A geometric representation for multivariate extremes, based on the shapes of scaled sample clouds in light-tailed margins and their so-called limit sets, has recently been shown to connect several existing extremal dependence concepts. However, these results are purely probabilistic, and the geometric approach itself has not been fully exploited for statistical inference. We outline a method for parametric estimation of the limit set shape, which includes a useful non/semi-parametric estimate as a pre-processing step. More fundamentally, our approach provides a new class of asymptotically-motivated statistical models for the tails of multivariate distributions, and such models can accommodate any combination of simultaneous or non-simultaneous extremes through appropriate parametric forms for the limit set shape. Extrapolation further into the tail of the distribution is possible via simulation from the fitted model. A simulation study confirms that our methodology is very competitive with existing approaches, and can successfully allow estimation of small probabilities in regions where other methods struggle. We apply the methodology to two environmental datasets, with diagnostics demonstrating a good fit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源