论文标题
在常规图中
Edge-connectivity and pairwise disjoint perfect matchings in regular graphs
论文作者
论文摘要
对于$ 0 \ leq t \ leq r $,让$ m(t,r)$是最大数字$ s $,因此每个$ t $连接的$ r $ -graph都具有$ s $ s $ s $ pairmwise Dissionwise Disscont Perfect匹配。 $ m(t,r)$已知,例如$ m(3,3)= m(4,r)= 1 $,而$ m(t,r)\ leq r-2 $ for all $ t \ not = 5 $,$ m(t,t,r)\ \ leq r-3 $如果$ r $甚至均匀。我们证明,每$ l \ geq 3 $和$ r \ geq 2 l $ $ m(2l,r)\ leq 3l -6 $。
For $0 \leq t \leq r$ let $m(t,r)$ be the maximum number $s$ such that every $t$-edge-connected $r$-graph has $s$ pairwise disjoint perfect matchings. There are only a few values of $m(t,r)$ known, for instance $m(3,3)=m(4,r)=1$, and $m(t,r) \leq r-2$ for all $t \not = 5$, and $m(t,r) \leq r-3$ if $r$ is even. We prove that $m(2l,r) \leq 3l - 6$ for every $l \geq 3$ and $r \geq 2 l$.