论文标题
建模主机人群对战斗对手的支持
Modelling host population support for combat adversaries
论文作者
论文摘要
我们考虑了由三个人群组成的对抗动力学模型,这些模型标记为蓝色,绿色和红色,它们在一阶非线性微分方程系统下进化。红色和蓝色人群是对手,并通过一系列兰切斯特战斗法律相互作用。绿色分为三个子人群:红色支持者,蓝色支持者和中性。对红色和蓝色的绿色支撑可为任一侧带来更大的战斗效率。从格林的角度来看,如果红色或蓝色根据当地人口促进或容忍的能力超过大小,则支持该侧面的减小;相应的绿色种群恢复为中性亚群,他们不促进双方的战斗效率。支持者的机制决定蓝色或红色是否太大,是由逻辑类型的相互作用项给出的。该模型的目的是检查影响在反叛乱中典型的复杂对抗情况中的作用,在这种情况下,胜利需要在保持战斗效率和支持并不能保证的第三方的支持之间取得真正的平衡。
We consider a model of adversarial dynamics consisting of three populations, labelled Blue, Green and Red, which evolve under a system of first order nonlinear differential equations. Red and Blue populations are adversaries and interact via a set of Lanchester combat laws. Green is divided into three sub-populations: Red supporters, Blue supporters and Neutral. Green support for Red and Blue leads to more combat effectiveness for either side. From Green's perspective, if either Red or Blue exceed a size according to the capacity of the local population to facilitate or tolerate, then support for that side diminishes; the corresponding Green population reverts to the neutral sub-population, who do not contribute to combat effectiveness of either side. The mechanism for supporters deciding if either Blue or Red are too big is given by a logistic-type interaction term. The intent of the model is to examine the role of influence in complex adversarial situations typical in counter-insurgency, where victory requires a genuine balance between maintaining combat effectiveness and support from a third party whose backing is not always assured.