论文标题

合成模糊:黑洞正常模式的线性坡道

Synthetic Fuzzballs: A Linear Ramp from Black Hole Normal Modes

论文作者

Das, Suman, Krishnan, Chethan, Kumar, A. Preetham, Kundu, Arnab

论文摘要

我们认为一个带有拉伸地平线的黑洞是模糊微晶格的玩具型号。拉伸的视野提供了一个截断式,因此可以确定该几何形状中探针标量的正常(与准法线相反)。对于BTZ黑洞,我们将其计算为$ n $和Angular量子数$ J $的函数。在该系统中不存在常规级别的排斥,但是我们发现频谱形式(SFF)显示出具有倾斜型斜纹式斜纹结构的明确证据,其线性斜坡在带有或不带平均的带有或不带有平均的斜率$ \ sim 1 $的线性斜坡上。我们证明,通过在Rindler楔形上重复我们的计算(时代是紧凑的空间),这是拉伸视野的强大特征。我们还观察到,这是{\ em not}的一个通用系统的通用功能,如标准示例(如Antegsable Billiards和Random 2 Site Coupled Syk模型)等标准示例所示。坡道的起源可以追溯到正常模式频谱对紧凑方向的量子数的层次较弱的依赖性以及所得的准排行证。最后,我们指出了4个位点耦合模型与负责封闭几何形状非线性不稳定性的四分之一耦合之间的类比。基于这一点,我们推测合并探针自我互动将导致与随机矩阵行为的更牢固的联系。

We consider a black hole with a stretched horizon as a toy model for a fuzzball microstate. The stretched horizon provides a cut-off, and therefore one can determine the normal (as opposed to quasi-normal) modes of a probe scalar in this geometry. For the BTZ black hole, we compute these as a function of the level $n$ and the angular quantum number $J$. Conventional level repulsion is absent in this system, and yet we find that the Spectral Form Factor (SFF) shows clear evidence for a dip-ramp-plateau structure with a linear ramp of slope $\sim 1$ on a log-log plot, with or without ensemble averaging. We show that this is a robust feature of stretched horizons by repeating our calculations on the Rindler wedge (times a compact space). We also observe that this is {\em not} a generic feature of integrable systems, as illustrated by standard examples like integrable billiards and random 2-site coupled SYK model, among others. The origins of the ramp can be traced to the hierarchically weaker dependence of the normal mode spectrum on the quantum numbers of the compact directions, and the resulting quasi-degeneracy. We conclude by noting an analogy between the 4-site coupled SYK model and the quartic coupling responsible for the non-linear instability of capped geometries. Based on this, we speculate that incorporating probe self-interactions will lead to stronger connections to random matrix behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源