论文标题
转移域适应性的低频特征
Transfering Low-Frequency Features for Domain Adaptation
论文作者
论文摘要
从计算机视觉的频率角度来看,以前的无监督域适应方法无法处理跨域问题。可以将不同域的图像或特征地图分解为低频组件和高频组件。本文提出了这样一个假设,即低频信息是更域的不变性,而高频信息包含与域相关的信息。因此,我们引入了一种名为低频模块(LFM)的方法,以提取域不变特征表示。 LFM由数字高斯低通滤波器构建。我们的方法易于实施,并且不引入额外的超参数。我们设计了两种有效的方法来利用LFM进行域的适应性,我们的方法与其他现有方法互补,并作为可以与这些方法结合使用的插件单元。实验结果表明,对于各种计算机视觉任务,包括图像分类和对象检测,我们的LFM优于最先进的方法。
Previous unsupervised domain adaptation methods did not handle the cross-domain problem from the perspective of frequency for computer vision. The images or feature maps of different domains can be decomposed into the low-frequency component and high-frequency component. This paper proposes the assumption that low-frequency information is more domain-invariant while the high-frequency information contains domain-related information. Hence, we introduce an approach, named low-frequency module (LFM), to extract domain-invariant feature representations. The LFM is constructed with the digital Gaussian low-pass filter. Our method is easy to implement and introduces no extra hyperparameter. We design two effective ways to utilize the LFM for domain adaptation, and our method is complementary to other existing methods and formulated as a plug-and-play unit that can be combined with these methods. Experimental results demonstrate that our LFM outperforms state-of-the-art methods for various computer vision tasks, including image classification and object detection.