论文标题
迭代减少多环积分中的辅助标量产品
Iteratively Reduce Auxiliary Scalar Product in Multi-loop Integrals
论文作者
论文摘要
在本文中,我们构建了一个均匀的公式,该公式可以迭代地减少任意多环feynman积分的所有辅助标量产品分子。具有这些分子的积分通常出现在逐个部分的集成(IBP)关系中。该公式是由广义的Sylvester的决定因素身份构建的。与仅使用传统的IBP减少方法相比,公式和传统IBP方法的组合显示出明显的加速。
In this paper, we construct a uniform formula that can iteratively reduce all auxiliary scalar product numerators of arbitrary multi-loop Feynman integrals. Integrals with such numerators commonly appear in Integration-By-Parts (IBP) relations. This formula is constructed with the generalized Sylvester's determinant identity. Compared to that using only traditional IBP reduction method, the combination of the formula and the traditional IBP method shows a significant speed-up.