论文标题

图形神经网络具有图案,可用于脆弱的子图发现

Graph Neural Networks with Motif-aware for Tenuous Subgraph Finding

论文作者

sun, Heli, Sun, Miaomiao, He, Liang, Jia, Xiaolin

论文摘要

脆弱的子图发现旨在检测几乎没有社交互动和节点之间关系较弱的子图。尽管在这项任务上做出了巨大的努力,但鉴于图形结构的数据,它们大多是进行的。这些方法取决于计算最短路径,并且需要枚举遭受组合爆炸的节点之间的所有路径。此外,他们都缺乏邻里信息的整合。为此,我们提出了一个名为Graph神经网络的新型模型,其中具有脆弱子图发现(GNNM)的图案,这是一个基于邻域聚集的GNNS框架,可以捕获节点之间的潜在关系。特别是,我们设计了一个GNN模块,以将节点投影到一个低维矢量中,该矢量将基于图案感知模块的节点内的高阶相关结合在一起。然后在矢量空间中设计贪婪的算法,以获得大小大于指定约束的脆弱子图。特别是,考虑到现有的评估指标无法捕获节点之间的潜在友谊,我们引入了一个新颖的潜在朋友(PF)概念,以从新的角度衡量图形的十分性。关于现实世界和合成数据集的实验结果表明,我们提出的方法GNNM在效率和子图质量方面的表现优于现有算法。

Tenuous subgraph finding aims to detect a subgraph with few social interactions and weak relationships among nodes. Despite significant efforts have been made on this task, they are mostly carried out in view of graph-structured data. These methods depend on calculating the shortest path and need to enumerate all the paths between nodes, which suffer the combinatorial explosion. Moreover, they all lack the integration of neighborhood information. To this end, we propose a novel model named Graph Neural Network with Motif-aware for tenuous subgraph finding (GNNM), a neighborhood aggregation based GNNs framework which can capture the latent relationship between nodes. Specially, we design a GNN module to project nodes into a low dimensional vector combining the higher-order correlation within nodes based on a motif-aware module. And then design greedy algorithms in vector space to obtain a tenuous subgraph whose size is greater than a specified constraint. Particularly, considering existing evaluation indicators cannot capture the latent friendship between nodes, we introduce a novel Potential Friend(PF) concept to measure the tenuity of a graph from a new perspective. Experimental results on the real-world and synthetic datasets demonstrate that our proposed method GNNM outperforms existing algorithms in efficiency and subgraph quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源