论文标题

各向异性加权$ l^q $ - $ l^r $估计外部域中Oseen Semigroup的估计

Anisotropically weighted $L^q$-$L^r$ estimates of the Oseen semigroup in exterior domains, with applications to the Navier-Stokes flow past a rigid body

论文作者

Takahashi, Tomoki

论文摘要

我们考虑Navier-Stokes的空间行为流过$ \ Mathbb {R}^3 $中的刚体。本文在具有各向异性权重$(1+ | x |)^α(1+| x | -x_1)^β$的Lebesgue空间中进行了分析,当人体的翻译速度与$ x_1 $ -Direction $ x_1 $ -drirection相似时,在流体的渐近结构中自然出现。我们在外部域中的Oseen Semigroup的各向异性加权$ L^Q $ -L^r $估计值。作为这些估计的应用,我们研究了各向异性加权$ l^Q $空间中Navier-Stokes流的稳定性/可达到性,以获得非平稳溶液的时空行为。

We consider the spatial-temporal behavior of the Navier-Stokes flow past a rigid body in $\mathbb{R}^3$. The present paper develops analysis in Lebesgue spaces with anisotropic weights $(1+|x|)^α(1+|x|-x_1)^β$, which naturally arise in the asymptotic structure of fluid when the translational velocity of the body is parallel to the $x_1$-direction. We derive anisotropically weighted $L^q$-$L^r$ estimates for the Oseen semigroup in exterior domains. As applications of those estimates, we study the stability/attainability of the Navier-Stokes flow in anisotropically weighted $L^q$ spaces to get the spatial-temporal behavior of nonstationary solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源