论文标题

融合多个惯性测量单元的统一过滤器

A Unified Filter for Fusion of Multiple Inertial Measurement Units

论文作者

Libero, Yaakov, Klein, Itzik

论文摘要

导航在自主表面和水下平台完成其任务的能力中起着至关重要的作用。大多数导航系统在惯性传感器和其他外部传感器(例如全球导航卫星系统)或多普勒速度日志之间采用融合。近年来,人们对使用多个惯性测量单元来提高导航准确性和鲁棒性已经增加了兴趣。最先进的例子包括虚拟惯性测量单元(VIMU)和联合的扩展卡尔曼滤波器(FEKF)。但是,每种方法都有其缺点。 VIMU不会改善传感器偏见,这构成了重要的错误来源,尤其是在低成本惯性传感器中。尽管FEKF确实提高了准确性,但它会从经验上对不确定性传播进行建模。如果未正确建模,这可能会导致全局解决方案差异。为了应对这些缺点,我们提出并得出了多个惯性传感器数据融合的新滤波器结构:统一的扩展Kalman滤波器(UEKF)。此外,为了应对多个相等的偏差差异估计问题,我们提供了偏置方差重新分布算法。我们的滤镜设计实现了系统中每个惯性传感器的偏置估计,提高了其准确性并允许使用不同数量的惯性传感器。我们表明,使用海上实验期间记录的真实数据,我们的UEKF的性能比其他技术状态更好,多种惯性传感器过滤器。

Navigation plays a vital role in the ability of autonomous surface and underwater platforms to complete their tasks. Most navigation systems apply a fusion between inertial sensors and other external sensors, such as global navigation satellite systems, when available, or a Doppler velocity log. In recent years, there has been increased interest in using multiple inertial measurement units to improve navigation accuracy and robustness. State of the art examples include the virtual inertial measurement unit (VIMU) and the federated extended Kalman filter (FEKF). However, each of those approaches has its drawbacks. The VIMU does not improve the sensor biases, which constitute a significant source of error, especially in low-cost inertial sensors. While the FEKF does improve accuracy, it models uncertainty propagation empirically. If not modeled correctly, this can cause the global solution to diverge. To cope with those shortcomings, we propose and derive a new filter structure for multiple inertial sensors data fusion: the unified extended Kalman filter (UEKF). In addition, to cope with the multiple equal bias variance estimation problem we offer the bias variance redistribution algorithm. Our filter design enables bias estimation for each of the inertial sensors in the system, improving its accuracy and allowing the use of a varying number of inertial sensors. We show that our UEKF performs better than other state of the art, multiple inertial sensor filters using real data recorded during sea experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源