论文标题
专家意见启发,以帮助基于深度学习的莱姆病分类器使用患者数据
Expert Opinion Elicitation for Assisting Deep Learning based Lyme Disease Classifier with Patient Data
论文作者
论文摘要
诊断出红斑偏头皮(EM)皮肤病变,使用深度学习技术最常见的早期症状可以有效预防长期并发症。现有的基于深度学习的EM识别的作品仅利用病变图像,因为缺乏与莱姆病有关的图像数据集和相关的患者数据。医生依靠患者有关皮肤病变背景的信息来确认其诊断。为了通过从患者数据中计算出的概率分数来协助深度学习模型,这项研究引起了15位医生的意见。对于启发过程,准备了一份与EM相关的问题和可能的答案的问卷。医生为问题的不同答案提供了相对权重。我们使用基于高斯混合物的密度估计将医生评估转换为概率得分。为了引起概率模型验证,我们利用了形式的概念分析和决策树。引起的概率得分可用于使基于图像的深度学习莱姆病前扫描剂稳健。
Diagnosing erythema migrans (EM) skin lesion, the most common early symptom of Lyme disease using deep learning techniques can be effective to prevent long-term complications. Existing works on deep learning based EM recognition only utilizes lesion image due to the lack of a dataset of Lyme disease related images with associated patient data. Physicians rely on patient information about the background of the skin lesion to confirm their diagnosis. In order to assist the deep learning model with a probability score calculated from patient data, this study elicited opinion from fifteen doctors. For the elicitation process, a questionnaire with questions and possible answers related to EM was prepared. Doctors provided relative weights to different answers to the questions. We converted doctors evaluations to probability scores using Gaussian mixture based density estimation. For elicited probability model validation, we exploited formal concept analysis and decision tree. The elicited probability scores can be utilized to make image based deep learning Lyme disease pre-scanners robust.