论文标题
通过基于代理的金融市场模拟了解日内价格形成过程:校准扩展的Chiarella模型
Understanding intra-day price formation process by agent-based financial market simulation: calibrating the extended chiarella model
论文作者
论文摘要
本文介绍了XGB-Chiarella,这是一种强大的新方法,用于部署基于代理的模型来生成现实的日内人造财务价格数据。这种方法基于基于代理的模型,由Xgboost机器学习替代校准。遵循扩展的Chiarella模型,在此基于代理的模型中引入了三种类型的交易代理:基本交易者,动量交易者和噪音交易者。特别是,XGB-Chiarella专注于配置模拟以准确反映实际市场行为。基于XGBoost机器学习替代物对基于代理的扩展Chiarella模型进行了基于代理的扩展Chiarella模型,而不是使用原始的期望最大化算法进行参数估计。结果表明,在提出的方法中学习的机器学习代理是基于真正的代理市场模拟的准确代表。所提出的校准方法优于原始的预期最大化参数参数估计,从历史和模拟程式化的事实之间的距离方面。通过相同的基础模型,所提出的方法能够在三种不同交易所列出的各种股票中生成现实的价格时间序列,这表明了日内价格形成过程的普遍性。对于本文选择的时间尺度(分钟),每类代理被证明足以捕获日内的价格形成过程。拟议的XGB-Chiarella方法提供了见解,即价格形成过程由动量交易者,基本交易者和噪音交易者之间的相互作用组成。它也可以用来通过从业人员来增强风险管理。
This article presents XGB-Chiarella, a powerful new approach for deploying agent-based models to generate realistic intra-day artificial financial price data. This approach is based on agent-based models, calibrated by XGBoost machine learning surrogate. Following the Extended Chiarella model, three types of trading agents are introduced in this agent-based model: fundamental traders, momentum traders, and noise traders. In particular, XGB-Chiarella focuses on configuring the simulation to accurately reflect real market behaviours. Instead of using the original Expectation-Maximisation algorithm for parameter estimation, the agent-based Extended Chiarella model is calibrated using XGBoost machine learning surrogate. It is shown that the machine learning surrogate learned in the proposed method is an accurate proxy of the true agent-based market simulation. The proposed calibration method is superior to the original Expectation-Maximisation parameter estimation in terms of the distance between historical and simulated stylised facts. With the same underlying model, the proposed methodology is capable of generating realistic price time series in various stocks listed at three different exchanges, which indicates the universality of intra-day price formation process. For the time scale (minutes) chosen in this paper, one agent per category is shown to be sufficient to capture the intra-day price formation process. The proposed XGB-Chiarella approach provides insights that the price formation process is comprised of the interactions between momentum traders, fundamental traders, and noise traders. It can also be used to enhance risk management by practitioners.