论文标题

Raguel:求助于诉讼的团体不公平消除

RAGUEL: Recourse-Aware Group Unfairness Elimination

论文作者

Haldar, Aparajita, Cunningham, Teddy, Ferhatosmanoglu, Hakan

论文摘要

尽管机器学习和基于排名的系统在敏感决策过程中广泛使用(例如,确定求职者,分配信用评分),但他们对成果中意外偏见的关注充满了关注,这使算法公平性(例如,粉料范围,平等机会,机会均衡,机会平等)成为了感兴趣的目标。 “算法追索”提供了可行的恢复措施,通过修改属性来改变不必要的结果。我们介绍了排名级别的追索权公平的概念,并开发了一个“追索意识的排名”解决方案,该解决方案满足了排名的追索性公平约束,同时最大程度地减少了建议的修改成本。我们的解决方案提出了可以重新排序数据库记录列表并减轻组级不公平的干预措施;具体而言,子组的不成比例表示和追索权成本不平衡。此重新排列可确定对数据点的最小修改,这些属性修改根据其易于追索性进行了加权。然后,我们提出了一个有效的基于块的扩展名,该扩展可以在任何粒度上重新排序(例如,银行贷款利率的多个括号,搜索引擎结果的多页)。对真实数据集的评估表明,尽管现有方法甚至可能加剧诉求不公平,但我们的解决方案 - raguel-可以显着改善追索性的公平性。 Raguel通过反事实生成和重新排列的合并过程,在大规模数据集的效率上保持效率,在改善追索性公平方面的替代方案。

While machine learning and ranking-based systems are in widespread use for sensitive decision-making processes (e.g., determining job candidates, assigning credit scores), they are rife with concerns over unintended biases in their outcomes, which makes algorithmic fairness (e.g., demographic parity, equal opportunity) an objective of interest. 'Algorithmic recourse' offers feasible recovery actions to change unwanted outcomes through the modification of attributes. We introduce the notion of ranked group-level recourse fairness, and develop a 'recourse-aware ranking' solution that satisfies ranked recourse fairness constraints while minimizing the cost of suggested modifications. Our solution suggests interventions that can reorder the ranked list of database records and mitigate group-level unfairness; specifically, disproportionate representation of sub-groups and recourse cost imbalance. This re-ranking identifies the minimum modifications to data points, with these attribute modifications weighted according to their ease of recourse. We then present an efficient block-based extension that enables re-ranking at any granularity (e.g., multiple brackets of bank loan interest rates, multiple pages of search engine results). Evaluation on real datasets shows that, while existing methods may even exacerbate recourse unfairness, our solution -- RAGUEL -- significantly improves recourse-aware fairness. RAGUEL outperforms alternatives at improving recourse fairness, through a combined process of counterfactual generation and re-ranking, whilst remaining efficient for large-scale datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源