论文标题

MODNET:多偏见云云网络定制为多尺度补丁定制的网络

MODNet: Multi-offset Point Cloud Denoising Network Customized for Multi-scale Patches

论文作者

Huang, Anyi, Xie, Qian, Wang, Zhoutao, Lu, Dening, Wei, Mingqiang, Wang, Jun

论文摘要

3D表面的复杂性通常会导致表面降解中的尖端点云降解(PCD)模型,包括残余噪声,错误地被错误的几何细节。尽管使用多尺度贴片来编码点的几何形状已成为PCD中的常见智慧,但我们发现,根据有关噪声点的几何信息,提取的多尺度特征的简单聚合无法适应地利用适当的比例信息。它导致表面降解,特别是对于接近边缘和复杂曲面上的点的点。我们提出了一个有趣的问题 - 如果采用多尺度的几何感知信息来指导网络利用多尺度信息,可以消除严重的表面退化问题?为了回答它,我们提出了针对多尺度修补程序定制的多偏见去核网络(MODNET)。首先,我们通过补丁功能编码器提取三个量表补丁的低级特征。其次,一个多尺度感知模块设计为嵌入每个比例功能的多尺度几何信息,并回归多尺度权重,以指导多偏置的多余型deoising位移。第三,多偏移解码器会回归三个刻度偏移,这些缩放量偏移以多尺度权重为指导,以通过适应性加权来预测最终位移。实验表明,我们的方法在合成和实范围的数据集上都实现了新的最新性能。

The intricacy of 3D surfaces often results cutting-edge point cloud denoising (PCD) models in surface degradation including remnant noise, wrongly-removed geometric details. Although using multi-scale patches to encode the geometry of a point has become the common wisdom in PCD, we find that simple aggregation of extracted multi-scale features can not adaptively utilize the appropriate scale information according to the geometric information around noisy points. It leads to surface degradation, especially for points close to edges and points on complex curved surfaces. We raise an intriguing question -- if employing multi-scale geometric perception information to guide the network to utilize multi-scale information, can eliminate the severe surface degradation problem? To answer it, we propose a Multi-offset Denoising Network (MODNet) customized for multi-scale patches. First, we extract the low-level feature of three scales patches by patch feature encoders. Second, a multi-scale perception module is designed to embed multi-scale geometric information for each scale feature and regress multi-scale weights to guide a multi-offset denoising displacement. Third, a multi-offset decoder regresses three scale offsets, which are guided by the multi-scale weights to predict the final displacement by weighting them adaptively. Experiments demonstrate that our method achieves new state-of-the-art performance on both synthetic and real-scanned datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源