论文标题

大型神经网络,用于从分区数据中学习符合性演变

Large-step neural network for learning the symplectic evolution from partitioned data

论文作者

Li, Xin, Li, Jian, Xia, Zhihong Jeff, Georgakarakos, Nikolaos

论文摘要

在这项研究中,我们专注于学习汉密尔顿系统,该系统涉及预测由互合映射产生的坐标(q)和动量(p)变量。基于Chen&Tao(2021),符号映射由生成函数表示。为了延长预测时间段,我们通过将时间序列(q_i,p_i)分为几个分区来开发新的学习方案。然后,我们训练一个大型神经网络(LSNN),以近似第一个分区(即初始条件)和其余分区之间的生成函数。这种分区方法使我们的LSNN在预测系统演变时有效地抑制了累积错误。然后,我们训练LSNN,以学习2:3共振的Kuiper带对象的运动长期为25000年。结果表明,在我们先前的工作中构建的神经网络有两个显着的改进(Li等,2022):(1)雅各比整合的保护,以及(2)轨道演化的高度准确预测。总体而言,我们建议设计的LSNN有可能大大改善对更一般的哈密顿系统长期演变的预测。

In this study, we focus on learning Hamiltonian systems, which involves predicting the coordinate (q) and momentum (p) variables generated by a symplectic mapping. Based on Chen & Tao (2021), the symplectic mapping is represented by a generating function. To extend the prediction time period, we develop a new learning scheme by splitting the time series (q_i, p_i) into several partitions. We then train a large-step neural network (LSNN) to approximate the generating function between the first partition (i.e. the initial condition) and each one of the remaining partitions. This partition approach makes our LSNN effectively suppress the accumulative error when predicting the system evolution. Then we train the LSNN to learn the motions of the 2:3 resonant Kuiper belt objects for a long time period of 25000 yr. The results show that there are two significant improvements over the neural network constructed in our previous work (Li et al. 2022): (1) the conservation of the Jacobi integral, and (2) the highly accurate predictions of the orbital evolution. Overall, we propose that the designed LSNN has the potential to considerably improve predictions of the long-term evolution of more general Hamiltonian systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源