论文标题

Langevin Dynamics的白噪声波动定理

White-noise fluctuation theorem for Langevin dynamics

论文作者

Innerbichler, Max, Militaru, Andrei, Frimmer, Martin, Novotny, Lukas, Dellago, Christoph

论文摘要

基于时间逆转的波动定理为热力学量(如热,工作和熵产生)等热力学数量的非平衡统计量提供了显着的见解。这些类型的定律对反映了基本动力对称性的某些轨迹功能的分布施加限制。在这项工作中,我们介绍了langevin动力学的详细波动定理,该定理是从高斯白噪声而不是时间反转的统计数据中介绍的。该定理源自相位空间中的点对称性,可以单独容纳每个自由度与加性或乘法噪声耦合的。该关系与动力学生成的相位空间分布无关,可用于得出适用于广泛系统的多功能参数推理算法,包括非保守性和非马克维亚的系统。

Fluctuation theorems based on time-reversal have provided remarkable insight into the non-equilibrium statistics of thermodynamic quantities like heat, work, and entropy production. These types of laws impose constraints on the distributions of certain trajectory functionals that reflect underlying dynamical symmetries. In this work, we introduce a detailed fluctuation theorem for Langevin dynamics that follows from the statistics of Gaussian white noise rather than from time-reversal. The theorem, which originates from a point-wise symmetry in phase space, holds individually for each degree of freedom coupled to additive or multiplicative noise. The relation is independent of the phase space distribution generated by the dynamics and can be used to derive a versatile parameter inference algorithm applicable to the a wide range of systems, including non-conservative and non-Markovian ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源