论文标题
连贯性和亚森伯格限制激光器的次福斯尼学位之间没有权衡的权衡
No Tradeoff between Coherence and Sub-Poissonianity for Heisenberg-Limited Lasers
论文作者
论文摘要
Heisenberg对激光相干$ \ Mathfrak {C} $的极限 - 激光束的最大填充模式下的光子数 - 是激光内部激发数量的第四强度。我们通过删除梁光子统计数据为Poissonian(即Mandel的$ Q = 0 $)的要求来概括此上限缩放的先前证明。然后,我们证明$ \ Mathfrak {C} $与次波多桑尼亚($ Q <0 $)之间的关系是双赢的,而不是权衡。对于常规(非马克维亚),具有半自动增益(允许$ q \ xrightArrow {} -1 $)和随机(Markovian)泵送的优化增益,$ \ mathfrak {c} $在$ q $最大化时最大化。
The Heisenberg limit to laser coherence $\mathfrak{C}$ -- the number of photons in the maximally populated mode of the laser beam -- is the fourth power of the number of excitations inside the laser. We generalize the previous proof of this upper bound scaling by dropping the requirement that the beam photon statistics be Poissonian (i.e., Mandel's $Q=0$). We then show that the relation between $\mathfrak{C}$ and sub-Poissonianity ($Q<0$) is win-win, not a tradeoff. For both regular (non-Markovian) pumping with semi-unitary gain (which allows $Q\xrightarrow{}-1$), and random (Markovian) pumping with optimized gain, $\mathfrak{C}$ is maximized when $Q$ is minimized.