论文标题

量子神经网络中的对称修剪

Symmetric Pruning in Quantum Neural Networks

论文作者

Wang, Xinbiao, Liu, Junyu, Liu, Tongliang, Luo, Yong, Du, Yuxuan, Tao, Dacheng

论文摘要

量子系统的许多基本属性都被其哈密顿和基态捕获。尽管基态制备(GSP)具有重要意义,但对于大规模的哈密顿人来说,这项任务在经典上是棘手的。发挥现代量子机的力量的量子神经网络(QNN)已成为征服此问题的领先协议。因此,如何提高QNN的性能成为GSP中的关键主题。经验证据表明,具有手工对称的Ansatzes的QNN通常比不对称Ansatzes的QNN具有更好的训练性,而尚未探索理论解释。为了填补这一知识差距,我们在这里提出有效的量子神经切线核(EQNTK),并将此概念与过度参数化理论联系起来,以量化QNNS趋向全球最佳OPTA的收敛。我们发现,对称Ansatzes的进步归因于其较大的EQNTK值,其有效尺寸很小,这要求很少的参数和量子电路深度达到过度参数化的制度,允许良性损失景观和快速收敛。在EQNTK的指导下,我们进一步设计了一种对称修剪(SP)方案,可以自动从过度参数化和不对称的对称性ANSATZ量身定制对称的ANSATZ,以极大地提高QNN的性能,而汉密尔顿的显式对称信息是不可用的。进行了广泛的数值模拟,以验证EQNTK的分析结果和SP的有效性。

Many fundamental properties of a quantum system are captured by its Hamiltonian and ground state. Despite the significance of ground states preparation (GSP), this task is classically intractable for large-scale Hamiltonians. Quantum neural networks (QNNs), which exert the power of modern quantum machines, have emerged as a leading protocol to conquer this issue. As such, how to enhance the performance of QNNs becomes a crucial topic in GSP. Empirical evidence showed that QNNs with handcraft symmetric ansatzes generally experience better trainability than those with asymmetric ansatzes, while theoretical explanations have not been explored. To fill this knowledge gap, here we propose the effective quantum neural tangent kernel (EQNTK) and connect this concept with over-parameterization theory to quantify the convergence of QNNs towards the global optima. We uncover that the advance of symmetric ansatzes attributes to their large EQNTK value with low effective dimension, which requests few parameters and quantum circuit depth to reach the over-parameterization regime permitting a benign loss landscape and fast convergence. Guided by EQNTK, we further devise a symmetric pruning (SP) scheme to automatically tailor a symmetric ansatz from an over-parameterized and asymmetric one to greatly improve the performance of QNNs when the explicit symmetry information of Hamiltonian is unavailable. Extensive numerical simulations are conducted to validate the analytical results of EQNTK and the effectiveness of SP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源