论文标题
手性旋转液体中域壁的结构
Structure of domain walls in chiral spin liquids
论文作者
论文摘要
手性旋转液体是量子旋转的拓扑状态的规范示例之一,与对称性的手性秩序共存。在过去的几年中,它的实验意识已积极讨论。在这里,由于拓扑结构和对称性破坏之间的相互作用,我们研究了两个具有相反手性的手性旋转液体结构域之间界面的物理。我们表明,存在旋子的自洽均值描述,它描述了域墙上的手性变化,又描述了生活在其上的无间隙边缘模式。 Ginzburg-域壁的Landau理论是根据平均场景制定的,我们从中获得了域壁的非宇宙特性,例如壁宽和张力。我们表明,可以通过Jackiw-Rebbi机制访问拓扑保护的域壁边缘状态的速度。我们进一步认为,边缘的无间隙模式为域壁理论贡献了额外的非分析$ | ϕ^3 | $项,并为这种非分析性找到了数值证据。
The chiral spin liquid is one of the canonical examples of a topological state of quantum spins coexisting with symmetry-breaking chiral order; its experimental realization has been actively discussed in the past few years. Here, motivated by the interplay between topology and symmetry breaking, we examine the physics of the interface between two chiral spin liquid domains with opposite chiralities. We show that a self-consistent mean-field description for the spinons exists that describes both the change of chirality at the domain wall and the gapless edge modes living on it. A Ginzburg--Landau theory for the domain wall is formulated based on the mean-field picture, from which we obtain the non-universal properties of the domain wall such as the wall width and tension. We show that the velocity of the topologically protected domain wall edge states can be accessed through the Jackiw-Rebbi mechanism. We further argue that the gapless modes at the edge contribute an extra, non-analytic $|ϕ^3|$ term to the domain wall theory, and find numerical evidence for this non-analyticity.