论文标题

具有对流和扩散的时空数据集的SPDE方法

The SPDE approach for spatio-temporal datasets with advection and diffusion

论文作者

Clarotto, Lucia, Allard, Denis, Romary, Thomas, Desassis, Nicolas

论文摘要

在使用统计方法预测环境科学中的时空场的任务中,引入了受到基本现象的物理学启发的统计模型,这些模型在数值上有效的是越来越多的兴趣。大型时空数据集要求采用新的数值方法来有效地处理它们。事实证明,随机部分微分方程(SPDE)方法在空间环境中对估计和预测有效。我们在这里介绍了具有一阶导数的对流扩散SPDE,它定义了一类不可分割的时空模型。通过使用有限的差异方法(隐式Euler)和使用有限元方法(连续的Galerkin)在每个时间步骤中求解时间衍生物,并通过将时间衍生物离散,在每个时间步骤中求解空间SPDE,而在每个时间步骤中求解空间SPDE,则构建了解决方案对SPDE的高斯马尔可夫随机场近似。当对流项主导扩散时,引入了“流线扩散”稳定技术。提出了计算有效的方法来估计SPDE的参数,并通过Kriging和进行条件模拟来预测时空场。该方法应用于太阳辐射数据集。讨论了它的优势和局限性。

In the task of predicting spatio-temporal fields in environmental science using statistical methods, introducing statistical models inspired by the physics of the underlying phenomena that are numerically efficient is of growing interest. Large space-time datasets call for new numerical methods to efficiently process them. The Stochastic Partial Differential Equation (SPDE) approach has proven to be effective for the estimation and the prediction in a spatial context. We present here the advection-diffusion SPDE with first order derivative in time which defines a large class of nonseparable spatio-temporal models. A Gaussian Markov random field approximation of the solution to the SPDE is built by discretizing the temporal derivative with a finite difference method (implicit Euler) and by solving the spatial SPDE with a finite element method (continuous Galerkin) at each time step. The ''Streamline Diffusion'' stabilization technique is introduced when the advection term dominates the diffusion. Computationally efficient methods are proposed to estimate the parameters of the SPDE and to predict the spatio-temporal field by kriging, as well as to perform conditional simulations. The approach is applied to a solar radiation dataset. Its advantages and limitations are discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源