论文标题

$ \ MATHCAL {T} $ - 矩阵方法用于计算从任意粒子簇的光波散射时第二次谐波生成的方法:应用于连续体中结合状态的非线性光学相互作用

$\mathcal{T}$-matrix method for computation of second-harmonic generation upon optical wave scattering from clusters of arbitrary particles: Application to nonlinear optical interaction of bound states in the continuum

论文作者

Sekulic, Ivan, Wang, Ji Tong, You, Jian Wei, Panoiu, Nicolae C.

论文摘要

我们从由中心对称光学材料制成的任意形状的颗粒中得出了针对第二谐波(SH)生成数值分析的$ \ MATHCAL {T} $ - 矩阵形式主义。首先,通过扩展的边界条件方法计算单个粒子的传输矩阵,其中电磁场在基本频率和sh中均在矢量球形波函数中扩展,并且在散射器的表面上满足了积分公式。我们通过考虑局部表面和非局部体积极化对非线性极化密度源的局部表面和非局部散装极化来允许对SH源进行准确的物理描述,从而使粒子通过粒子产生SH信号的源。然后将这种单粒子形式主义扩展到粒子的任意分布,通过将簇中粒子的线性和非线性电磁波散射纳入形式主义和非线性电磁波散射。重要的是,从实际的角度来看,我们的方法可以应用于由以通用频率分散关系为特征的光学材料制成的任意形状的颗粒,以便它可以描述金属,半导体或极性颗粒的线性和非线性光学响应,以及此类粒子的混合物。此处提出的方法比建立的数值技术更快,更高,尤其是在球形颗粒的分析中,由于波散射分析中使用的球形波基函数的有利对称性。

We derive the $\mathcal{T}$-matrix formalism tailored for numerical analysis of second-harmonic (SH) generation from arbitrarily shaped particles made of centrosymmetric optical materials. First, the transfer matrix of a single particle is computed via the extended boundary condition method, in which the electromagnetic fields both at fundamental frequency and SH are expanded in vector spherical wave functions, and the integral formulation is satisfied away from the surface of the scatterer. We allow for the accurate physical description of the SH sources by taking into account both local surface and nonlocal bulk polarization contributions to the nonlinear polarization density source responsible for the generation of the SH signal by a particle. This single-particle formalism is then extended to arbitrary distributions of particles by incorporating into the formalism linear and nonlinear electromagnetic wave scattering from the particles in the cluster. Importantly from a practical point of view, our method can be applied to particles of arbitrary shape made of optical materials characterized by general frequency-dispersion relations, so that it can describe the linear and nonlinear optical response of clusters of metallic, semiconductor, or polaritonic particles, as well as mixtures of such particles. The approach proposed here is faster and more memory-efficient than well-established numerical techniques, especially in the analysis of spheroidal particles, due to the favorable symmetries of spherical wave basis functions used in the wave scattering analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源