论文标题
$ l_ \ infty $ -Modules的标量限制
Restriction of Scalars for $L_\infty$-Modules
论文作者
论文摘要
令$ i:l'\ to l $为$ l_ \ infty $ -algebras的形态。本文的目的是描述$ l_ \ infty $ -Modules的标量限制,并证明它定义了functor $ i^*:l \ text {-mod} \ to l'\ text {-mod} $。 Kraft-Schnitzer最近给出了一种更抽象的方法。在随后的论文中,该结果被应用以表明在浓稠的环中的链路缝合的环形khovanov同源性上有一个定义明确的$ l_ \ infty $模块结构。
Let $I: L' \to L$ be a morphism of $L_\infty$-algebras. The goal of this paper is to describe restriction of scalars in the setting of $L_\infty$-modules and prove that it defines a functor $I^*: L\text{-mod} \to L'\text{-mod}$. A more abstract approach to this problem was recently given by Kraft-Schnitzer. In a subsequent paper, this result is applied to show that there is a well-defined $L_\infty$-module structure on the sutured annular Khovanov homology of a link in a thickened annulus.