论文标题

双线性动力学系统的有限样品识别

Finite Sample Identification of Bilinear Dynamical Systems

论文作者

Sattar, Yahya, Oymak, Samet, Ozay, Necmiye

论文摘要

双线性动力学系统在许多不同的域中无处不在,也可以用于近似更通用的控制型系统。这激发了从系统状态和输入的单个轨迹中学习双线性系统的问题。在温和的边际均方稳定性假设下,我们确定需要多少数据来估算未知的双线性系统,直至具有高概率的所需精度。就轨迹长度,系统的维度和输入大小而言,我们的样本复杂性和统计错误率是最佳的。我们的证明技术依赖于Martingale小球条件的应用。这使我们能够正确捕获问题的属性,特别是我们的错误率不会随着不稳定性的增加而恶化。最后,我们表明数值实验与我们的理论结果良好。

Bilinear dynamical systems are ubiquitous in many different domains and they can also be used to approximate more general control-affine systems. This motivates the problem of learning bilinear systems from a single trajectory of the system's states and inputs. Under a mild marginal mean-square stability assumption, we identify how much data is needed to estimate the unknown bilinear system up to a desired accuracy with high probability. Our sample complexity and statistical error rates are optimal in terms of the trajectory length, the dimensionality of the system and the input size. Our proof technique relies on an application of martingale small-ball condition. This enables us to correctly capture the properties of the problem, specifically our error rates do not deteriorate with increasing instability. Finally, we show that numerical experiments are well-aligned with our theoretical results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源